
International Journal of Scientific & Engineering Research, Volume 7, Issue 5, May-2016
ISSN 2229-5518

IJSER © 2016

http://www.ijser.org

Optimization of Support Vector Machine on Multi-
core processor with OpenMP

Sumit Patel, Bhadreshsinh Gohil, Dr. M. B. Potdar

Abstract— In this paper, multicore processors and OpenMP are used for optimize the SVM. The SVM is machine learning algorithms,

which is widely used in image classification. There are different methods for clustering data for SVM training phase. Here, we used KMeans

clustering, because it gives better result than others methods. We used different size of data for analyse the performance of KMeans and

SVM. We got more speedup for large size data on multicore processors. Here, we used Open Multi Processing library for parallelizing

OpenCV (Open Computer Vision) programs, which is library for image processing. Here, we discussed the performance of OpenCV

programs with OpenMP for small size data and big size data.

Index Terms— KMeans Clustering, Multicore, OpenCV, OpenMP, Parallelization, Speedup, SVM, Threads.

—————————— ——————————

1 INTRODUCTION

HERE are many image processing tools and algorithms. It
includes KMeans clustering, K-Nearest, Haar Classifier,
Support Vector Machine [1] and Wavelet transformation,

etc. This tools and algorithms are used in various applications
and in various areas [2]. Here, we used SVM for image classi-
fication because of its functionality and accuracy. There are
various versions of SVM. We used OpenCV SVM source, in
which libsvm are used by OpenCV. We used OpenCV library
for image processing operations. OpenCV provides different
kernels like linear kernel, polynomial kernel and RBF kernel
for SVM [3]. We tested different kernels for different types of
data. We used KMeans for making clusters of data, which
were used in SVM training phase for assigning labels to train-
ing data. Yukai Yao, Yongqing Yu, Yang Liu and Weiming Lv
suggest that kmeans can work on small data and reduce the
training and prediction time of SVM [4]. In past, there was
single core or dual core processors for processing and other
computation tasks. Nowadays companies make quad core,
octa core, and many core processors like Intel Xeon E5-2650.
With multi core processors we can get better speedup for vari-
ous programs. Also it is applicable to image processing algo-
rithms. For making parallel programs we can use CUDA,
OpenMP, Intel TBB and Message Passing Interface. OpenMP
provides parallelization for shared memory architecture [5],
[6].

2 BACKGROUND

Kun Tan et al. use Support Vector Machine as classifiers for
hyperspectral image classification. For making it faster they
proposed two-level parallel computing frameworks. They

————————————————

 Sumit Patel is currently pursuing masters degree program in computer engi-
neering in Gujarat Technological University PG School, Ahmedabad, India, E-
mail: smpatel1992@gmail.com

 Bhadreshsinh Gohil is currently assistant professor in Gujarat Technological
University PG School, Ahmedabad, India, E-mail: bhadresh.wimc@gtu.edu.in

 Dr. M.B.Potdar is currently project director in Bhaskaracharya Institute of
Space Application and Geo-informatics, Gandhinagar, Gujarat,India, E-
mail:mbpotdar11@gmail.com

used CUDA for GPU based optimization and OpenMP for
task-level parallelism. Because of more than 200 channels in
hyperspectral images, data analysis become complex and as
data size is increased, time for computation with complexity
also is increased. In that paper, NVidia GPU and parallel li-
brary CUDA and OpenMP are used with SVM. SVM with
GPU take less time than libsvm for training data sets. So with
parallel library and GPU classification of images can be done
in less time [7]. In image segmentation, partitioning of images
are performed. Different parts of original image have different
objects and characteristics. For getting information about
them, transformation and rotation are required. For that vari-
ous algorithms are used, but traditional algorithms are time
consuming for large size images. With advancement in multi-
core architecure, methods of programming are changed.
OpenMP provides parallelism explicitly for multicore proces-
sors. Authors proposed an experimental method for image
segmentation with parallel wavelet transform. They used
OpenMP parallel library for making parallel faster execution
[8]. Rashmi C et al. presented various parts detection of face
using Haar Classifier. They used shared memory concept of
OpenMP for parallel programming. Detection of front face,
eye, nose, eye brow, mouth, hand and so forth require more
time. The task of face part detection is not dependent on each
other. So OpenMP is useful here, because it provides task-level
parallelism and they got different speedup for different types
of faces [9]. In this paper [10], there are two phases in SVM
classification. For training phase, sequential minimal optimi-
zation (SMO) is widely used. To avoid iterative complexity,
analytical approach is used for solving sub quadratic pro-
gramming. It reduces storage space because in this approach,
storing of kernel matrix is not required. As per authors view,
to accelerate training of large data sets by SMO, there are two
ways. First is that with optimization of working data sets, re-
duce the number of iterations. And second is use parallel ver-
sion of SMO, which use multithreading approach to reduce
the running time. They used OpenMP for parallelization. With
OpenMP they got more than 150% speedup. Suli Zhang et Al.
[11] said that because of powerful camera and new technolo-
gies images are become larger and their size increasing day by
day. Their parallel dilate algorithm for signal processing be-

T

675

IJSER

International Journal of Scientific & Engineering Research Volume 7, Issue 5, May-2016
ISSN 2229-5518

IJSER © 2016

http://www.ijser.org

came slower because of bigger size. So they used MP and MPI
for parallelizing algorithm. And their new algorithm was fast-
er than old one. Authors said that we can get parallel compu-
ting with distributed architecture system and parallel system
[12]. It depends on behaviour of application and format of
processing data. Lan Xiaowen said that OpenMP is useful only
for multicore processors. Because in OpenMP, program com-
pile with inbuilt directives (#pragma), which cannot give ad-
vantage of OpenMP on single core processors [13]. Greg
Slabaugh et al. used OpenMP for image processing applica-
tions like image warping, binary morphology erosion & bina-
ry morphology dilation, median filtering and normalization
on multicore processors [5]. For detecting face in image and
video P. E. Hadjidoukas et al. use OpenMP in their system.
They used different images for analysed the result of new sys-
tem with OpenMP. Their algorithm was based on neural net-
works. In sequential algorithm, they could process only 11
images per sec on quad core system. And their parallel version
algorithm provided processing more than 25 images per se-
cond. For that they used three or more threads [14]. Liuyang
Fang et al. presented the paper on ZSMS images processing
with parallel libraries. Their implementation was based on
MOC. They used CUDA, OpenMP and distributed memory
parallel library MPI. They used CPUs and GPUs both and
their system took 86.10 seconds execution time for 12 images
[15]. Sumit Patel et al. said that CUDA library on Nvidia cards
gives higher performance than OpenMP and MPI. But
OpenMP is easier than others for parallelizing the sequential
algorithms [18].

3 PROPOSED SYSTEM

Fig. 1. SVM with OpenMP

As shown in Fig. 1, in our system, first we converted data in
suitable format and select 30 % of total data as training data.
Then we applied KMeans Clustering before SVM training
phase. It divides data into different clusters. After training
step, we applied SVM on whole data for prediction. In Output
data, we got classified image as output of program. And for
parallelization we applied OpenMP on KMeans Clustering,
SVM training step and SVM prediction step.

4 METHODOLOGY

To perform image processing operation like classification on
data, we choose SVM method. We used OpenCV library for
implement SVM on different processor. There are different
versions of SVM. OpenCV uses libsvm for SVM functions like
svm training and svm predictions. Firstly we selected the data
files in text format for loading data in program. Then we made
one image matrix on of their files. Then we divided the data in
training data and testing data in 30:70 ratios. We used 512 by
512 size data and 3000 by 3000 size data. After that we used
KMeans clustering for dividing data in clusters. And they are
used for assign labels. Generate labels is possible with differ-
ent techniques. Randomly generation of labels for classifica-
tion in svm is also used. It is fast in some points, but its result
is worse than KMeans clustering. Also parallelization for ran-
dom number is tough and accuracy of svm also is decreased.
Use K-Means for creating cluster in SVM is better than other
algorithms. It gives better performance and more accurate
result. Yukai Yao et al. suggest that kmeans can work on small
data and reduce the training and prediction time of SVM, be-
cause of no need of whole data set [16]. Jiaqi Wang, Xindong
Wu and Chengqi Zhang [17] use SVM for business intelli-
gence. But, SVM took more time for processing real BI applica-
tion. They used KMeans, which provided higher response
time with same accuracy. After that we performed SVM train-
ing for assigning data to different classes (clusters). After
training phase, program generates .xml file of parameters and
labels for data. This xml file is used in testing phase. In second
phase we perform prediction on whole data set. Finally, we
generate output image, which is classified image. For making
it parallelize, we apply OpenMP on KMeans Clustering. Also
we try OpenMP on svm training phase and svm prediction
phase. Then we tested these different versions of programs on
Intel i3, Intel i5 and Intel i7.

5 EXPERIMENT RESULTS

We used different system for analysis of our program. We set
up OpenCV in Visual Studio 2012 on different systems. We
tested performance with different size of data, different num-
ber of threads, and different number of clusters with different
accuracy and different iteration. We used KMeans clustering
for creating labels, which assigned to training data sample. It
gives better result than randomly generated labels. We can see
the difference in Fig. 3 and Fig. 4. Here, Fig. 2 is source image,
which is generated from text formats data.

676

IJSER

International Journal of Scientific & Engineering Research Volume 7, Issue 5, May-2016
ISSN 2229-5518

IJSER © 2016

http://www.ijser.org

Fig. 2. Source Image (RGB)

Fig. 3. SVM Classified Image with K-means

677

IJSER

International Journal of Scientific & Engineering Research Volume 7, Issue 5, May-2016
ISSN 2229-5518

IJSER © 2016

http://www.ijser.org

Fig. 4. SVM Classified Image without K-means

5.1 Performance on different CPU

We performed the tests on Intel i3, Intel i5 and Intel i7. We
used 512 by 512 and 3000 by 3000 data (image). Here iter, eps
and 512*512 & 3000*3000 are iteration of K-means, accuracy
and image size, respectively. Small values of eps represent

higher accuracy. Number of clusters (NC) is used in assigning
the labels to training data in SVM training phase. And avg &
max, which are average of different runs on different threads
and maximum value among different runs respectively.

TABLE 1
EXECUTION TIME OF SVM ON INTEL I7 WITH DIFFERENT NUMBER

 OF THREADS (512*512)

SVM iter=1000 eps=.01 512*512

NC Thread 1 2 4 6 8 10 12 14

5
avg 6.143 3.98 3.936 4 4.0767 3.716 4.12 3.955

max 6.4 4.23 4.1 4.15 4.51 3.86 4.24 4.16

7
avg 7.426 5.747 5.605 5.653 5.453 5.4 5.63 5.553

max 7.67 5.98 6.06 5.85 5.91 5.71 6.04 5.64

10
avg 11.157 9.527 8.763 8.636 7.943 8.466 8.773 8.273

max 12.03 10.5 9.12 9.01 8.36 8.84 9.16 8.76

13
avg 13.923 11.043 9.566 9.53 9.97 9.463 9.1367 9.51

max 15.03 11.56 9.79 10.17 10.14 9.73 9.89 10.09

15
avg 16.75 11.747 10.63 10.827 10.05 10.663 10.503 10.627

max 18.41 12.71 10.87 11.83 10.25 11.08 11.17 11.07

20
avg 21.123 13.997 11.587 12.503 12.097 11.59 11.72 11.487

max 21.87 14.42 11.72 13.02 13.19 12.8 11.96 11.77

678

IJSER

International Journal of Scientific & Engineering Research Volume 7, Issue 5, May-2016
ISSN 2229-5518

IJSER © 2016

http://www.ijser.org

Table 1 represent the result for different cluster for different
thread for 512 by 512 size data. From this table, we can depict
that there is improvement in speedup, which is more than
Intel i3 and Intel i7. Also because of more cache and more
RAM memory than other two processors, Intel i7 give better
performance. It is quad core processor. So it provides 8
threads and we can get more speedup than i3 & i5. In i3 and i5
processor, increment in speedup is limited up to 4 to 6 threads,
while in Intel i7; it is up to 8 to 10 threads. Sometimes, there is
decrement in speedup because of looping and other processes.
Also synchronization limits the performance of multicore &

multithreading technologies. Because of small size, there is not
much difference with different threads.
Table 2 represents the result for different cluster for different
thread for 3000 by 3000 size data. This table shows that i7
gives better performance for large data because of more
threads and large memory and turbo boost also increase the
frequency if processors when workloads increasing constantly
on processors. Intel i7 gives 2 to 3 times better performance
than Intel i3. Also here, RAM size is bigger for i7 than i3 and
i5.

TABLE 2
EXECUTION TIME OF SVM ON INTEL I7 WITH DIFFERENT NUMBER

 OF THREADS (3000*3000)

SVM iter=1000 eps=.01 3000*3000

NC Thread 1 2 4 6 8 10 12 14

5 avg 113.98 80.49 75.666 79.313 72.193 73.82 75.23 74.63

max 117.62 90.07 81.25 82.67 76.72 84.89 85.2 79.89

10 avg 251.65 159.81 153.04 159.24 137.26 127.64 145.17 132.40

max 296.57 168.20 159.34 166.28 158.44 134.00 154.39 137.78

15 avg 340.65 220.10 184.47 199.91 193.34 187.71 180.51 180.56

max 374.62 238.59 198.55 212.79 215.60 204.38 189.14 192.22

20 avg 482.08 316.24 252.54 285.47 254.19 248.41 226.66 234.92

max 503.69 331.17 264.21 307.84 263.45 258.18 236.28 257.48

Figure 5 and 6 shows the chart for time (require for executing
programs) versus threads for 512 by 512 size data and 3000 by
3000 size data, respectively. We can depict same results from
both. Time for execution is decreasing rapidly from one thread

to four threads. Then it slightly increased at 6 (six threads).
Then it becomes linear in Figure 5. In Figure 6, execution time
is same after 12 threads and it will increase for big number of
threads.

Fig. 5. Execution time for different number of threads (512*512)

679

IJSER

International Journal of Scientific & Engineering Research Volume 7, Issue 5, May-2016
ISSN 2229-5518

IJSER © 2016

http://www.ijser.org

Fig. 6. Execution time for different number of threads (3000*3000)

Fig. 7. Speedup for different number of Clusters (SVM)

Fig. 8. Speedup for different number of Clusters (K-means)

680

IJSER

International Journal of Scientific & Engineering Research Volume 7, Issue 5, May-2016
ISSN 2229-5518

IJSER © 2016

http://www.ijser.org

We used the ratio from one thread to other threads like 1 to 2,
1 to 4, and so on. It is useful to analyze the speedup with dif-
ferent number of clusters as shown in Figure 7 and Figure 8.
From the Figure 7, we can say that speedup for SVM is rapidly
decreasing from 1.7 to 1.3 for 5 clusters to 7 clusters. After that,

speedup is gradually increasing up to 1.8 for 15 clusters. Than
from 15 to 20 clusters, there is no more increment. From the
Figure 8, we can say that speedup for K-means is gradually
increasing up to 2.5 for 20 clusters from 1.6 for 5 clusters. It is
better than SVM speedup for different number of clusters.

5.2 Performance with OpenMP

Here, we used OpenMP library for parallelization of K-means
and SVM. And then I tested with 512 by 512 and 3000 by 3000
size images on Intel i3, i5 and i7. First we will see the results in
table format then in graphical form.
Table 3, Table 4 and Table 5 shows the results for 512 by 512 size
data. Because of small size, there is no more difference between

two different versions of programs like SVM witout OpenMP
and SVM with OpenMP version. Finally, we can say that, pro-
grams with OpenMP libraries takes more time for execution than
programs without OpenMP. On Intel i3 and i5, there is approxi-
mately 60% more time require for programs with OpenMP.

TABLE 3
EXECUTION TIME FOR SVM AND K-MEANS WITH OPENMP & WITHOUT

OpenMP on i3 (512 *512)

Thread SVM SVM with
OpenMP

K-means K-means with
OpenMP

1 5.095 5.025 2.57 2.555

2 4.91 5.175 1.79 2.53

4 4.855 5.275 1.5 2.555

6 4.81 5.21 1.5105 2.555

8 4.89 5.35 1.49 2.55

 TABLE 4

EXECUTION TIME FOR SVM AND K-MEANS WITH OPENMP & WITHOUT

OpenMP on i5 (512 *512)

Thread SVM SVM with
OpenMP

K-means K-means with
OpenMP

1 4.95 4.96 2.37 2.51

2 4.81 5.09 1.79 2.50

4 4.70 5.13 1.4 2.53

6 4.69 4.91 1.51 2.55

8 4.85 5.05 1.50 2.35

 TABLE 5
EXECUTION TIME FOR SVM AND K-MEANS WITH OPENMP & WITHOUT

OpenMP on i5 (512 *512)

Thread SVM SVM with
OpenMP

K-means K-means with
OpenMP

1 1.99 2.145 1.17 1.17

2 1.97 1.945 0.89 1.17

4 2.12 2.11 0.84 1.195

6 1.955 2.065 0.87 1.21

8 1.99 2.11 0.775 1.21

10 1.99 2.11 0.785 1.215

Now, we see the result on Intel i7 for OpenMP version of SVM.
Table 6, Table 7 and Table 8 shows the results for 3000 by 3000
size data. There is no more difference between two different ver-
sions of programs for SVM and SVM with OpenMP. We can con-

clude that, SVM program with OpenMP libraries takes more 10
seconds time for execution than programs without OpenMP on
Intel i3 and i5. And for i7 OpenMP version of SVM takes 4 to 6
seconds more than simple SVM. There is approximately 30 se-

681

IJSER

International Journal of Scientific & Engineering Research Volume 7, Issue 5, May-2016
ISSN 2229-5518

IJSER © 2016

http://www.ijser.org

conds more time requiring for K-means program with OpenMP
on i3 and i5, while i7 takes more 10 to 13 seconds than simple K-

means.

TABLE 6

EXECUTION TIME FOR SVM AND K-MEANS WITH OPENMP & WITHOUT

OpenMP on i3 (3000*3000)

Thread SVM SVM with
OpenMP

K-means K-means with
OpenMP

1 57.15 58.78 87.7635 88.545

2 51.855 60 61.895 88.03

4 50.63 58.94 52.37 90.91

6 49.95 59.275 52.03 87.915

8 49.935 59.415 51.445 87

 TABLE 7
EXECUTION TIME FOR SVM AND K-MEANS WITH OPENMP & WITHOUT

OpenMP on i5 (3000*3000)

Thread SVM SVM with
OpenMP

K-means K-means with
OpenMP

1 56.63 58.26 85.243 87.025

2 51.335 59.48 60.375 86.51

4 50.11 58.42 50.85 89.39

6 49.43 58.755 50.51 86.395

8 49.415 58.895 49.925 85.48

 TABLE 8
EXECUTION TIME FOR SVM AND K-MEANS WITH OPENMP & WITHOUT

OpenMP on i7 (3000*3000)

Thread SVM SVM with
OpenMP

K-means K-means with
OpenMP

1 23.53333 23.61 40.28 40.74

2 20.53 23.26 30.01 40.76

4 19.61867 23.085 27.912 40.355

6 18.27667 25.91333 30 40.595

8 18.33 23.33 27.095 40.444

10 18.895 26 27.15 40.50

Fig. 9. Execution time for SVM without OpenMP & SVM with OpenMP

682

IJSER

International Journal of Scientific & Engineering Research Volume 7, Issue 5, May-2016
ISSN 2229-5518

IJSER © 2016

http://www.ijser.org

The chart in Figure 9, reveal that OpenMP decrease the speedup
of SVM in OpenCV. Without OpenMP, SVM takes 50 seconds on
8 threads, while with OpenMP it takes 59 seconds. Also SVM for
less number of classes cannot get more benefit of multicore pro-
cessors in OpenCV. Use of OpenMP in OpenCV programs explic-
itly increases the execution time. There is parallel loop in
OpenCV source files. Because of that explicit use of OpenMP is
not beneficial for OpenCV programs.

6. CONCLUSION

Nowadays we have bigger size images and video because of
advanced technologies. For making faster processing on those
data different parallelization concepts are used. The SVM is
mainly machine learning method and widely used in image
processing because it provides better accuracy as time passed.
Also in addition, algorithm with OpenMP and CUDA give
faster result than conventional algorithm. Parallel algorithms
with CUDA give higher result than OpenMP. But parallel
programming with OpenMP is less complex than CUDA pro-
gramming and OpenMP is available for most processors,
which are used nowadays.
 This paper presented some important efforts to apply SVM
and k-means for image processing. For optimize and reduce
run time of SVM, we used OpenMP. We tested on different
processors. From obtained results, we concluded that KMeans
and SVM give better performance for large number of clusters
than small number of clusters on multicore processors. Be-
cause of implicit parallelization, OpenMP increase the execu-
tion time up to 20% to 40% for SVM programs in OpenCV.
 For taking the benefit of OpenMP in OpenCV, we need to
make more changes in source file. Also we can use other paral-
lelization libraries like Intel TBB, CUDA or hybrid libraries
like MPI and OpenMP or CUDA and OpenMP.

REFERENCES

[1] Support Vector Machines: SVM

www.support-vector-machines.org/

[2] Pooja Kamavisdar, Sonam Saluja, Sonu Agrawal, “A Survey on Image Classi-

fication Approaches and Techniques”, IJARCCE, Vol. 2, Jan 2013

[3] http://docs.opencv.org/master/d1/d73/tutorial_introduction_to_svm.html

#gsc.tab

=0

[4] Yukai Yao, Yang Liu, Yongqing Yu, Hong Xu, Weiming Lv, Zhao Li, Xiaoyun

Chen, “K-SVM: An Effective SVM Algorithm Based on K-means Clustering”,

Journal of Computers, 2013

[5] Greg Slabaugh, Richard Boyes, Xiaoyun Yang, “Multicore Image Processing

with OpenMP”, IEEE, March 2010

[6] OpenMP Architecture Review Board. OpenMP specifications.

http://openmp.org/wp/openmp-specifications/

[7] Kun Tan, Junpeng Zhang, Qian Du, Xuesong Wang, “GPU Parallel Imple-

mentation of Support Vector Machines for Hyperspectral Image Classifica-

tion”, IEEE Journal of Selected Topics in Applied Earth Observations and

Remote Sensing, 2015

[8] Priya P. Sajan, S.S. Kumar, “Experimental Study on Parallel Wavelet Based

Image Segmentation Using Openmp”, International Conference on Control,

Instrumentation, Communication and Computational Technologies, IEEE,

2014

[9] Rashmi C, Dr.Vinay K, Dr. Hemantha Kumar G, “An Efficient Multithread-

ing Approach for Localization of Face Parts”, IEEE International Advance

Computing Conference, 2015

[10] Pengfei Chang, Zhuo Bi, and Yiyong Feng, “Parallel SMO Algorithm Imple-

mentation Based on OpenMP”, IEEE International Conference on System Sci-

ence and Engineering (ICSSE), 2014

[11] Suli Zhang, Haoran Hu, Xin Pan, “Parallelized Dilate Algorithm for Remote

Sensing Image”, The Scientific Journal, May 2014

[12] Harshad B. Prajapati, Dr. Sanjay K. Vij, “Analytical study of parallel and dis-

tributed image processing”, International Conference on Image Information

Processing (ICIIP), 2011

[13] Lan Xiaowen, “Research on Multi-Core PC Parallel Computation Based on

OpenMP”, IJMUE, 2014

[14] P. E. Hadjidoukas, V. V. Dimakopoulos, “A high performance face detection

system using OpenMP”, Concurrency and Computation: Practice and Expe-

rience, Vol. 21, No. 15, Oct. 2009

[15] Liuyang Fang, Mi Wang, Deren Li, and Jun Pan, “MOC-Based Parallel Pre-

processing of ZY-3 Satellite Images”, IEEE GEOSCIENCE AND REMOTE

SENSING LETTERS, VOL.12, NO. 2, FEBRUARY 2015

[16] Yukai Yao, Yang Liu, Yongqing Yu, Hong Xu, Weiming Lv, Zhao Li, Xiaoyun

Chen, “K-SVM: An Effective SVM Algorithm Based on K-means Clustering”,

Journal of Computers, 2013

[17] Jiaqi Wang, Xindong Wu, Chengqi Zhang, “Support vector machines based

on K-means clustering for real-time business intelligence systems”, Int. J.

Business Intelligence and Data Mining, 2005.

[18] Sumit Patel, Dr. M. B. Potdar, Bhadreshsinh Gohil, “A Survey on Image Pro-

cessing Techniques with OpenMP”, IJEDR, Dec 2015.

683

IJSER

